Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(5): 3520-3541, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38417036

RESUMO

Accumulating evidence has demonstrated a critical pathological role of oxysterol receptor GPR183 in various inflammatory and autoimmune diseases, including inflammatory bowel disease (IBD). However, the currently reported GPR183 antagonists are very limited and not qualified for in vivo studies due to their inferior druglike properties. Herein, we conducted a structural elaboration focusing on improving its PK and safety profile based on a reference antagonist NIBR189. Of note, compound 33, bearing an aminobenzothiazole motif, exhibited reduced hERG inhibition, improved PK properties, and robust antagonistic activity (IC50 = 0.82 nM) with high selectivity against GPR183. Moreover, compound 33 displayed strong in vitro antimigration and anti-inflammatory activity in monocytes. Oral administration of compound 33 effectively improved the pathological symptoms of DSS-induced experimental colitis. All of these findings demonstrate that compound 33 is a novel and promising GPR183 antagonist suitable for further investigation to treat IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Oxisteróis , Receptores de Esteroides , Humanos , Oxisteróis/efeitos adversos , Tiazóis/efeitos adversos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana , Receptores Acoplados a Proteínas G
2.
Clin Exp Pharmacol Physiol ; 49(8): 805-812, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577580

RESUMO

Atherosclerosis is associated with a haemostatic imbalance characterized by excessive activation of pro-inflammatory and pro-coagulant pathways. Non-vitamin K antagonists oral anticoagulant (NOACs) may reduce the incidence of cardiovascular events, cerebral ischemia, thromboembolic events and atherosclerosis. Chronic inflammation, vascular proliferation and the development of atherosclerosis is also influenced by 25-hydroxycholesterol (25-OHC). The aim of the study was to assess the effect of rivaroxaban and dabigatran on the messenger RNA (mRNA) expression of anti-inflammatory cytokines transforming growth factor ß (TGF-ß), interleukin (IL)-37, IL-35 as well as of pro-inflammatory cytokines IL-18 and IL-23, in endothelial cells damaged by 25-OHC. Human umbilical vascular endothelial cells (HUVECs) were treated with 25-OHC (10 µg/mL), rivaroxaban (100, 500 ng/mL), dabigatran (100, 500 ng/mL), 25-OHC + rivaroxaban, and 25-OHC + dabigatran. The mRNA expression of TGF-ß, IL-37, IL-35 subunits EBI3 and p35, IL-18, and IL-23 was analysed using real-time polymerase chain reaction (PCR). The results showed that 25-OHC decreased TGF-ß and IL-37 mRNA expression and increased EBI3, p35, IL-18, IL-23 mRNA expression in endothelial cell as compared to an untreated control (P < .05). Messenger RNA expression of TGF-ß and IL-37 significantly increased following stimulation with rivaroxaban and dabigatran as compared to an untreated control (P < .01). In HUVECs pre-treated with oxysterol, rivaroxaban and dabigatran increased mRNA expression of TGF-ß, IL-37 and decreased mRNA expression of EBI3, p35, IL-23 and IL-18 as compared to 25-OHC (P < .01). Our finding suggests that both rivaroxaban and dabigatran inhibit the inflammatory activation caused by oxysterol in vitro.


Assuntos
Aterosclerose , Citocinas , Dabigatrana , Células Endoteliais da Veia Umbilical Humana , Hidroxicolesteróis , Rivaroxabana , Administração Oral , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/imunologia , Fibrilação Atrial/tratamento farmacológico , Citocinas/genética , Citocinas/imunologia , Dabigatrana/farmacologia , Dabigatrana/uso terapêutico , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Hidroxicolesteróis/administração & dosagem , Hidroxicolesteróis/efeitos adversos , Hidroxicolesteróis/farmacologia , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-23/genética , Interleucina-23/imunologia , Oxisteróis/administração & dosagem , Oxisteróis/efeitos adversos , Oxisteróis/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Rivaroxabana/farmacologia , Rivaroxabana/uso terapêutico , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia
3.
Front Endocrinol (Lausanne) ; 11: 614692, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33776901

RESUMO

Non-alcoholic fatty liver disease is strongly associated with obese and type 2 diabetes. It has been reported that an oxidized cholesterol, 7-ketocholesterol (7KC), might cause inflammatory response in macrophages and plasma 7KC concentration were higher in patients with cardiovascular diseases or diabetes. Therefore, we have decided to test whether small amount of 7KC in diet might induce hepatic steatosis and inflammation in two types of obese models. We found that addition of 0.01% 7KC either in chow diet (CD, regular chow diet with 1% cholesterol) or western type diet (WD, high fat diet with 1% cholesterol) accelerated hepatic neutral lipid accumulation by Oil Red O staining. Importantly, by lipid extraction analysis, it has been recognized that triglyceride rather than cholesterol species was significantly accumulated in CD+7KC compared to CD as well as in WD+7KC compared to WD. Immunostaining revealed that macrophages infiltration was increased in CD+7KC compared to CD, and also in WD+7KC compared to WD. These phenotypes were accompanied by inducing inflammatory response and downregulating fatty acid oxidation. Furthermore, RNA sequence analysis demonstrated that 7KC reduced expression of genes which related to autophagy process. Levels of LC3-II protein were decreased in WD+7KC compared to WD. Similarly, we have confirmed the effect of 7KC on acceleration of steatohepatitis in db/db mice model. Collectively, our study has demonstrated that small amount of dietary 7KC contributed to accelerate hepatic steatosis and inflammation in obese mice models.


Assuntos
Colesterol na Dieta/administração & dosagem , Cetocolesteróis/administração & dosagem , Fígado/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Oxisteróis/administração & dosagem , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Colesterol na Dieta/efeitos adversos , Mediadores da Inflamação/metabolismo , Cetocolesteróis/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Obesos , Obesidade/patologia , Oxisteróis/efeitos adversos
4.
Sci Rep ; 9(1): 8459, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186457

RESUMO

The paradigm that cataracts are irreversible and that vision from cataracts can only be restored through surgery has recently been challenged by reports that oxysterols such as lanosterol and 25-hydroxycholesterol can restore vision by binding to αB-crystallin chaperone protein to dissolve or disaggregate lenticular opacities. To confirm this premise, in vitro rat lens studies along with human lens protein solubilization studies were conducted. Cataracts were induced in viable rat lenses cultured for 48 hours in TC-199 bicarbonate media through physical trauma, 10 mM ouabain as Na+/K+ ATPase ion transport inhibitor, or 1 mM of an experimental compound that induces water influx into the lens. Subsequent 48-hour incubation with 15 mM of lanosterol liposomes failed to either reverse these lens opacities or prevent the further progression of cataracts to the nuclear stage. Similarly, 3-day incubation of 47-year old human lenses in media containing 0.20 mM lanosterol or 60-year-old human lenses in 0.25 and 0.50 mM 25-hydroxycholesterol failed to increase the levels of soluble lens proteins or decrease the levels of insoluble lens proteins. These binding studies were followed up with in silico binding studies of lanosterol, 25-hydroxycholesterol, and ATP as a control to two wild type (2WJ7 and 2KLR) and one R120G mutant (2Y1Z) αB-crystallins using standard MOETM (Molecular Operating Environment) and Schrödinger's Maestro software. Results confirmed that compared to ATP, both oxysterols failed to reach the acceptable threshold binding scores for good predictive binding to the αB-crystallins. In summary, all three studies failed to provide evidence that lanosterol or 25-hydroxycholesterol have either anti-cataractogenic activity or bind aggregated lens protein to dissolve cataracts.


Assuntos
Catarata/tratamento farmacológico , Lanosterol/farmacologia , Cristalino/efeitos dos fármacos , Cadeia B de alfa-Cristalina/genética , Animais , Catarata/metabolismo , Catarata/patologia , Cristalinas/genética , Modelos Animais de Doenças , Humanos , Hidroxicolesteróis/metabolismo , Lanosterol/efeitos adversos , Cristalino/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/farmacologia , Oxisteróis/efeitos adversos , Oxisteróis/farmacologia , Ratos
5.
Mediators Inflamm ; 2018: 2784701, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713239

RESUMO

OBJECTIVE: Oxidized cholesterol derivatives are thought to exert atherogenic effect thus adversely affecting vascular endothelium. The aim of the study was to assess the effect of 5α,6α-epoxycholesterol on experimentally induced hypercholesterolemia in rabbits, and the levels of homocysteine (HCY), asymmetric dimethylarginine (ADMA), paraoxonase-1 (PON-1), and inflammatory parameters (IL-6, TNF-α, CRP). MATERIAL AND METHODS: The rabbits were divided into 3 groups, 8 animals each, and fed with basic fodder (C), basic fodder plus cholesterol (Ch) or basic fodder plus 5α,6α-epoxycholesterol, and unoxidized cholesterol (ECh). Serum concentrations of studied parameters were determined at 45-day intervals. The study was continued for six months. RESULTS: We demonstrated that adding 5α,6α-epoxycholesterol to basic fodder significantly affected lipid status of the experimental animals, increasing total cholesterol and LDL cholesterol levels, as well as HCY and ADMA levels, whilst leaving the PON-1 activity unaffected. Additionally, the ECh group presented with significantly higher concentrations of inflammatory biomarkers (IL-6, TNF-α, and CRP). In the Ch group, lower yet significant (as compared to the C group) changes of levels of studied parameters were observed. CONCLUSION: Exposure of animals with experimentally induced hypercholesterolemia to 5α,6α-epoxycholesterol increases dyslipidaemia, endothelial dysfunction, and inflammatory response.


Assuntos
Hipercolesterolemia/sangue , Inflamação/sangue , Oxisteróis/efeitos adversos , Animais , Arginina/análogos & derivados , Arginina/sangue , Arildialquilfosfatase/sangue , Proteína C-Reativa/metabolismo , Colesterol/sangue , Colesterol/farmacologia , Dislipidemias/sangue , Homocisteína/metabolismo , Hipercolesterolemia/induzido quimicamente , Inflamação/induzido quimicamente , Interleucina-6/sangue , Lipídeos/sangue , Masculino , Coelhos , Fator de Necrose Tumoral alfa/sangue
6.
Redox Biol ; 15: 86-96, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29220698

RESUMO

The complete mechanism accounting for the progression from simple steatosis to steatohepatitis in nonalcoholic fatty liver disease (NAFLD) has not been elucidated. Lipotoxicity refers to cellular injury caused by hepatic free fatty acids (FFAs) and cholesterol accumulation. Excess cholesterol autoxidizes to oxysterols during oxidative stress conditions. We hypothesize that interaction of FAs and cholesterol derivatives may primarily impair mitochondrial function and affect biogenesis adaptation during NAFLD progression. We demonstrated that the accumulation of specific non-enzymatic oxysterols in the liver of animals fed high-fat+high-cholesterol diet induces mitochondrial damage and depletion of proteins of the respiratory chain complexes. When tested in vitro, 5α-cholestane-3ß,5,6ß-triol (triol) combined to FFAs was able to reduce respiration in isolated liver mitochondria, induced apoptosis in primary hepatocytes, and down-regulated transcription factors involved in mitochondrial biogenesis. Finally, a lower protein content in the mitochondrial respiratory chain complexes was observed in human non-alcoholic steatohepatitis. In conclusion, hepatic accumulation of FFAs and non-enzymatic oxysterols synergistically facilitates development and progression of NAFLD by impairing mitochondrial function, energy balance and biogenesis adaptation to chronic injury.


Assuntos
Ácidos Graxos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxisteróis/metabolismo , Apoptose/genética , Dieta Hiperlipídica , Progressão da Doença , Ácidos Graxos/efeitos adversos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Metabolismo dos Lipídeos , Fígado/patologia , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Oxirredução , Estresse Oxidativo/genética , Oxisteróis/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo
7.
Mol Nutr Food Res ; 61(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28815947

RESUMO

SCOPE: The aim of the present study was to investigate the ability of extra virgin olive oil (EVOO) polyphenols to counteract the proinflammatory effects induced by dietary and endogenous oxysterols in ex vivo immune cells. METHODS AND RESULTS: Peripheral blood mononuclear cells (PBMCs), separated from the whole blood of healthy donors, were utilized and were stimulated with an oxysterols mixture, in the presence of physiologically relevant concentrations of the EVOO polyphenols, hydroxytyrosol, tyrosol, and homovanillic alcohol. Oxysterols significantly increased the production of proinflammatory cytokines, interleukin-1ß, regulated on activation, normal T-cell expressed and secreted and macrophage migration inhibitory factor in ex vivo cultured PBMCs. Increased levels of reactive oxygen species (ROS) were also detected along with increased phosphorylation of the p38 and JNK. All phenolic compounds significantly reduced cytokine secretion induced by the oxysterols and inhibited ROS production and mitogen activated protein kinase phosphorylation. CONCLUSIONS: These results suggest that extra virgin olive oil polyphenols modulate the immune response induced by dietary and endogenous cholesterol oxidation products in human immune cells and may hold benefit in controlling chronic immune and/or inflammatory processes.


Assuntos
Citocinas/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Azeite de Oliva/química , Oxisteróis/efeitos adversos , Polifenóis/farmacologia , Adulto , Humanos , Leucócitos Mononucleares/metabolismo , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
8.
Oxid Med Cell Longev ; 2016: 2915382, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27340507

RESUMO

Oxysterol like 27-hydroxycholesterol (27OHChol) has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined whether dexamethasone (Dx) affects 27OHChol-induced differentiation using THP-1 cells. Treatment of monocytic cells with Dx resulted in almost complete inhibition of transcription and surface expression of CD80, CD83, and CD88 induced by 27OHChol. Elevated surface levels of MHC class I and II molecules induced by 27OHChol were reduced to basal levels by treatment with Dx. A decreased endocytosis ability caused by 27OHChol was recovered by Dx. We also examined effects of Dx on expression of CD molecules involved in atherosclerosis. Increased levels of surface protein and transcription of CD105, CD137, and CD166 by treatment with 27OHChol were significantly inhibited by cotreatment with Dx. These results indicate that Dx inhibits 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules whose levels are associated with atherosclerosis. In addition, we examined phosphorylation of AKT induced by 27OHChol and effect of Dx, where cotreatment with Dx inhibited the phosphorylation of AKT. The current study reports that Dx regulates oxysterol-mediated dendritic cell differentiation of monocytic cells.


Assuntos
Dexametasona/farmacologia , Oxisteróis/efeitos adversos , Diferenciação Celular , Humanos , Monócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...